题目描述
涵涵有两盒火柴,每盒装有 n 根火柴,每根火柴都有一个高度。现在将每盒中的火柴各自排成一列,同一列火柴的高度互不相同,两列火柴之间的距离定义为:Σ(ai-bi)^2, i=1~n,其中ai表示第一列火柴中第i个火柴的高度,bi表示第二列火柴中第i个火柴的高度。
每列火柴中相邻两根火柴的位置都可以交换,请你通过交换使得两列火柴之间的距离最小。请问得到这个最小的距离,最少需要交换多少次?如果这个数字太大,请输出这个最小交换次数对 99,999,997 取模的结果。
输入
共三行,第一行包含一个整数 n,表示每盒中火柴的数目。
第二行有 n 个整数,每两个整数之间用一个空格隔开,表示第一列火柴的高度。
第三行有 n 个整数,每两个整数之间用一个空格隔开,表示第二列火柴的高度。
输出
输出共一行,包含一个整数,表示最少交换次数对 99,999,997 取模的结果。
样例输入输出
输入#1
复制
4
2 3 1 4
3 2 1 4
输入#2
复制
4
1 3 4 2
1 7 2 4
提示
【输入输出样例1说明】
最小距离是0,最少需要交换1次,比如:交换第1列的前2根火柴或者交换第2列的前2根火柴。
【输入输出样例2说明】
最小距离是10,最少需要交换2次,比如:交换第1列的中间2根火柴的位置,再交换第2列中后2根火柴的位置。
【数据范围】
对于 10%的数据, 1 ≤ n ≤ 10;
对于 30%的数据,1 ≤ n ≤ 100;
对于 60%的数据,1 ≤ n ≤ 1,000;
对于 100%的数据,1 ≤ n ≤ 100,000,0 ≤火柴高度≤ 2^31-1