问题 2574 --[USACO 4.3.3]街道赛跑

2574: [USACO 4.3.3]街道赛跑

题目描述

  

图一表示一次街道赛跑的跑道。可以看出有一些路口(用 0 到 N 的整数标号),和连接这些路口的箭头。路口 0 是跑道的起点,路口 N 是跑道的终点。箭头表示单行道。运动员们可以顺着街道从一个路口移动到另一个路口(只能按照箭头所指的方向)。当运动员处于路口位置时,他可以选择任意一条由这个路口引出的街道。

一个良好的跑道具有如下几个特点: 每一个路口都可以由起点到达。 从任意一个路口都可以到达终点。 终点不通往任何路口。 运动员不必经过所有的路口来完成比赛。有些路口却是选择任意一条路线都必须到达的(称为“不可避免”的)。在上面的例子中,这些路口是 0,3,6,9。对于给出的良好的跑道,你的程序要确定“不可避免”的路口的集合,不包括起点和终点。 假设比赛要分两天进行。为了达到这个目的,原来的跑道必须分为两个跑道,每天使用一个跑道。第一天,起点为路口 0,终点为一个“中间路口”;第二天,起点是那个中间路口,而终点为路口 N。对于给出的良好的跑道,你的程序要确定“中间路口”的集合。如果良好的跑道 C 可以被路口 S 分成两部分,这两部分都是良好的,并且 S 不同于起点也不同于终点,同时被分割的两个部分满足下列条件:(1)它们之间没有共同的街道(2)S 为它们唯一的公共点,并且 S 作为其中一个的终点和另外一个的起点。那么我们称 S 为“中间路口 ”。在例子中只有路口 3 是中间路口。

输入

输入文件包括一个良好的跑道,最多有 50 个路口,100 条单行道。一共有 N+2 行,前面 N+1 行中第 i 行表示以 i 为起点的街道,每个数字表示一个终点。行末用 -2 作为结束。最后一行只有一个数字 -1。

输出

你的程序要有两行输出: 第一行包括:跑道中“不可避免的”路口的数量,接着是这些路口的序号,序号按照升序排列。 第二行包括:跑道中“中间路口”的数量,接着是这些路口的序号,序号按照升序排列。

样例输入输出

输入#1 复制
1 2 -2
3 -2
3 -2
5 4 -2
6 4 -2
6 -2
7 8 -2
9 -2
5 9 -2
-2
-1
输出#1 复制
2 3 6
1 3

提示

序号 标题 作者 发表时间 费用 订购数 操作