问题 4013 --6. [BeiJing2010组队]次小生成树(Bzoj1977)

4013: 6. [BeiJing2010组队]次小生成树(Bzoj1977)

题目描述

  小 C 最近学了很多最小生成树的算法,Prim 算法、Kurskal 算法、消圈算法等等。 正当小 C 洋洋得意之时,小 P 又来泼小 C 冷水了。小 P 说,让小 C 求出一个无向图的次小生成树,而且这个次小生成树还得是严格次小的,也就是说: 如果最小生成树选择的边集是 EM,严格次小生成树选择的边集是 ES,那么需要满足:(value(e) 表示边 e的权值)    $\sum_{e \in E_M} value(e)< \sum_{e \in E_S} value(e)$    这下小 C 蒙了,他找到了你,希望你帮他解决这个问题。

输入

第一行包含两个整数N 和M,表示无向图的点数与边数。 接下来 M行,每行 3个数x y z 表示,点 x 和点y之间有一条边,边的权值为z。

输出

包含一行,仅一个数,表示严格次小生成树的边权和。(数据保证必定存在严格次小生成树)

样例输入输出

输入#1 复制
5 6
1 2 1
1 3 2
2 4 3
3 5 4
3 4 3
4 5 6
输出#1 复制
11

提示

数据中无向图无自环;
50% 的数据N≤2 000 M≤3 000;
80% 的数据N≤50 000 M≤100 000;
100% 的数据N≤100 000 M≤300 000 ,边权值非负且不超过 10^9 。

序号 标题 作者 发表时间 费用 订购数 操作