序号 | 标题 | 作者 | 发表时间 | 费用 | 订购数 | 操作 |
---|
小 C 喜欢跑步,并且非常喜欢在微信步数排行榜上刷榜,为此他制定了一个刷微信步数的计划。
他来到了一处空旷的场地,处于该场地中的人可以用 $k$ 维整数坐标 $(a_1, a_2,\ldots, a_k)$ 来表示其位置。场地有大小限制,第 $i$ 维的大小为 $w_i$,因此处于场地中的人其坐标应满足 $1 \leq a_i \leq w_i(1 \leq i \leq k)$。
小 C 打算在接下来的 $P = w_1 \times w_2 \times \ldots \times w_k$ 天中,每天从场地中一个新的位置出发,开始他的刷步数计划(话句话说,他将会从场地中每个位置都出发一次进行计划)。
他的计划非常简单,每天按照事先规定好的路线行进,每天的路线由 $n$ 步移动构成,每一步可以用 $c_i$ 与 $d_i$ 表示:若他当前位于 $(a_1, a_2, \ldots , a_{c_i}, \ldots, a_k)$,则这一步他将会走到 $(a_1, a_2, \ldots , a_{c_i} + d_i, \ldots , a_k)$ ,其中 $1 \le c_i \le k,d_i \in \{-1, 1\}$。小 C 将会不断重复这个路线,直到他走出了场地的范围才结束一天的计划。(即走完第 $n$ 步后,若小 C 还在场内,他将回到第 $1$ 步从头再走一遍)。
小 C 对自己的速度非常有自信,所以他并不在意具体耗费的时间,他只想知道 $P$ 天之后,他一共刷出了多少步微信步数。请你帮他算一算。